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Abstract

In this short summary of the Continuous
Product Graph Neural Networks (CITRUS)
framework, we present an intuitive overview
of its core motivation for learning from mul-
tidomain data on multiple graphs. We outline
the key mathematical derivations, highlight the
model’s stability and over-smoothing properties,
and summarize the main experimental find-
ings. Additionally, we compare CITRUS to
a closely related discrete approach (GTCNN)
and discuss how CITRUS generalizes beyond
polynomial filtering to a continuous, PDE-
based paradigm. We also faced some issues
in our experiment code and made this pull
request to improve the open-source repository:

github.com/ArefEinizade?2/CITRUS/pull/1.

1. Introduction and Motivation

Many real-world applications generate data that reside on
multiple interacting graphs, which we refer to as factor
graphs. Examples include traffic data that can be mod-
eled on a spatial road network and a temporal graph of
successive time steps, as well as multi-dimensional signals
(e.g., images or videos) that can be represented by the prod-
uct of multiple graphs. The primary challenge in learn-
ing from multidomain graph data is developing efficient
frameworks that can effectively capture joint interactions
between graphs.

Previous work in this area has proposed discrete graph fil-
tering operations in product graphs (PGs). However, these
methods inherit well-known issues from traditional Graph
Neural Networks (GNNG5), including:

* Over-smoothing and over-squashing, particularly in
discrete polynomial-based GNNs that require careful
selection of filter orders.

* Computationally costly or ad hoc hyperparameter
tuning when dealing with multiple domains, typically
involving sequential processing of different modalities
(e.g., space, time, frequency).

These limitations restrict the graph’s receptive field and
hinder the modeling of long-range interactions, ultimately
constraining the performance of GNNs on multidomain
graph data. To overcome these challenges, CITRUS (Con-
tinuous Product Graph Neural Networks), makes a novel
framework that addresses these issues by modeling tenso-
rial data on product graphs continuously, using partial dif-
ferential equations (PDEs). Specifically, CITRUS employs
two key strategies: i) continuous graph filtering, which al-
lows for more effective capture of complex interactions,
and ii) a general framework that can accommodate any
number of factor graphs, making it a versatile solution for
a wide range of applications. By leveraging these innova-
tions, CITRUS introduces a closed-form exponential filter
that is lightweight, stable, and can be extended to an arbi-
trary number of domains, thereby unlocking the full poten-
tial of graph-based models for real-world applications.

2. Key Equations and Theoretical
Underpinnings

2.1. Tensorial PDE on Graphs

Let there be P factor graphs, each with an undirected
Laplacian L, € RY»*Ne. Denote our multidomain sig-
nal as U; € RNVix—xNp 4 P-way tensor evolving over
continuous time ¢t. CITRUS proposes the tensorial PDE
on graphs (TPDEG):

v, .
aTt = =Y U xp Ly, (1)
p=1

where X, denotes a mode-p product (i.e., multiplication on
the p-th dimension).

Closed-Form Solution. If the initial tensor at ¢ = 0 is 5'0,
the PDE (I)) admits

Ut = Uo X1 67tL1 X9 67tL2 e Xp 67tLP. (2)

Hence, each factor Laplacian contributes an exponential
graph filter. CITRUS generalizes from two-factor (spa-
tiotemporal) to multi-domain PDEs.
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2.2. CITRUS Layer Formulation

A CITRUS network consists of L layers; each layer ¢ ap-
plies a learnable continuous filter:

— tgP)Lp

Ui =olU, — VL .
41 =0(Uyg X1 € X2 Xp €

X pt1 WeT)7 3)

where:

o Uy € RNV1XxXNexFe g the input to layer £.

. tgp ) is a learnable “time” parameter controlling diffu-

sion on factor graph p.

* W, is atrainable linear weight for channel mixing, and
o(+) is a nonlinearity (e.g. ReLU).

Proposition 3.3. (From the paper) The core function of
CITRUS in (5) can be rewritten as:

[ @) piny] =0 U] oy Wi @)

where L := @;;1 L, is the Laplacian of the Cartesian
product graph.

Proposition 3.3 is the main building block for implement-
ing CITRUS. More precisely, we use the spectral decompo-
sitions of the factor graphs {L, = V,A,V," }”_| and prod-
uct graph {Le = Vo AoV }, where Vg = ®§:1 V,, and
Ag = @521 A,. Let K, < N, be the number of selected
eigenvalue-eigenvector pairs of the p-th factor Laplacian.
When K, = N,, it can be shown that we can rewrite (6) as
follows:

[f Wiy ] =V (Ao (VT [0 ) Wi,

&)
with
P

~ (Kp)
= @ ©)

p=1

where A7) € RE»x1 and V5P ¢ RVo¥E» are the
first K, < N, selected eigenvalues and eigenvectors of
L, based on largest eigenvalue magnitudes, respectively,
and © is the pointwise multiplication operation. Finally,
we can define the output of the [-th layer of CITRUS as

Ursaiprny = o(F (U piy )
where o (-) is some proper activation function.

2.3. Stability and Over-Smoothing

Stability. Suppose each factor adjacency A, is perturbed
by a small noise matrix £,. Then the overall Cartesian

product adjacency Ap,oq is perturbed by Zp E), in a prod-
uct sense, leading to a bounded additive effect on U}. For-

mally, CITRUS’s solution error grows linearly with factor
perturbations, yielding

P
(s ) = broisy (ws )| = D~ 1Byl
p=1

Over-Smoothing. In deep GNNs, node embeddings often
collapse to a constant when many layers are stacked. To
analyze this in CITRUS, let

Ue RN1><~~~><NP><F

be a multidomain feature tensor, and denote by L” the nor-
malized Laplacian of the p-th factor graph. The tensorial
Dirichlet energy is:

1 F P N
BU) =533 tr(UfT(p) v Uf(,,)),
f:l p=1

where Uy, is the mode-p unfolding of U along the feature
index f. Large diffusion times ¢¢(p) on each domain can
drive E(U) to zero, yielding an over-smoothed (constant)
embedding.

When ¢ — oo, E(X,) exponentially converges to 0 if

hl(S) - ? < 0.

Interpretation. Theorem 3.10 shows that the factor graph
with the smallest non-zero eigenvalue (spectral gap)—
multiplied by its receptive field—dominates the overall
over-smoothing behavior. The smaller the spectral gap, the
lower the probability that the factor graph is connected.

3. Experiments

We briefly highlight key experimental insights (full details
in (1)).

Datasets. MetrLA and PemsBay, standard road sensor
benchmarks. Each node is a sensor, connected in a spa-
tial graph. The time steps form a second factor graph. We
predict future traffic speeds given the past few minutes.

Setup. We compare CITRUS with various baselines:
* GRUGCN, a TTS pipeline using GRU (temporal) then
GNN (spatial).

* GTCNN, a discrete product-graph (2 graphs only :
temporal and spatial) approach (polynomial filters).

e Others (e.g. Graph Wavenet, STGCN).
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Ilustrative Results (MetrLA, Horizon=12). Below is a
snippet from the longer-horizon (60-min ahead) prediction.
Smaller MAE is better.

Method MAE Reference
GRUGCN  3.62 (0]
GTCNN 3.55 @
CITRUS 3.44 ((00)

Table 1. Excerpt of results on MetrLA (H=12).

CITRUS outperforms or matches baselines, particularly for
longer horizons, supporting its continuous multi-domain
design.

Below is a comparison between our reproduced results
and those from the paper for H=3 :

Table 2. Paper Results

Dataset MAE MAPE RMSE
MetrLA 270  6.74% 5.14
PemsBay 1.21 2.51% 2.61

Table 3. Our Results

Dataset MAE MAPE RMSE
MetrLA 270  7.07% 5.10
PemsBay 1.11 2.22% 2.31

Table 4. Comparison of our reproduced results (left) with the orig-
inal paper results (right).

In Molene (32 stations, hourly data) and NOAA (109
stations, thousands of hours), CITRUS similarly showed
robust gains over discrete product-graph baselines, with
the domain-specific diffusion times controlling smoothing
across space and time.

3.1. Ablation

The ablation study in the paper looks into the parts of
CITRUS that are in charge of learning the spatiotemporal
relationships in the data.The authors compare two popu-
lar architectures: TTS and STT. In the TTS setup, they
first run the data through an RNN (specifically, a GRU)
and then pass the output to a GNN, while in the STT ap-
proach the order is reversed. They also introduce continu-
ous versions—CTTS and CSTT—where the regular GNN
is swapped out for a continuous GNN (CGNN).

The experiments on the MetrLA dataset show that CITRUS
performs the best. This might be because it learns the spa-
tial and temporal dependencies together rather than one af-
ter the other. Additionally, the continuous models (CTTS
and CSTT) outperform the regular ones (TTS and STT),

W=

Kronecker: Sg = St ® Sg; [Es| = |ETIIE]
Cartesian: Sy =Sy @Iy +Ir ® S; [Ex| = T|E] + N|&x|
Strong: Sy = Sg + S« |Ex| = |Es| + [Ex]

Figure 1. Product graphs

which suggests that using adaptive graph neighborhoods is
more effective than relying on simple 1-hop connections in
standard GNNs.

4. Relation to GTCNN
4.1. Choice of GTCNN

We selected GTCNN as our second reference because it
was consistently cited in the CITRUS paper. GTCNN pro-
vides a foundational discrete approach to product-graph
processing—specifically for the case of two factor graphs
(space and time)—and in so doing, establishes benchmarks
and methodologies upon which CITRUS builds. Revisit-
ing GTCNN’s core ideas illuminates how CITRUS extends
that discrete paradigm to a continuous, PDE-driven frame-
work and clarifies the reasoning behind many of CITRUS’s
design choices.

4.2. Summary of GTCNN

GTCNN proposes a discrete polynomial filtering
paradigm on a product graph that fuses space and time.
Specifically, it constructs a parametric product-graph shift

operator
1 1

S@ = ZZSU (Séﬂ ®SJ)7
i=0 j=0
where § € RN¥*N and Sy € RT*T are shift opera-
tors for the spatial and temporal graphs, respectively, and
{si;} are learnable scalars capturing spatiotemporal cou-
pling strength. Once Sg, is set, GTCNN learns a polyno-
mial filter of order K:

K

Uy = ihk (S®)ka:® = th (zl:zl:su (S%@Sj))kx(@,

k=0 i=0 j=0

(7

where zg € is the vectorized spatiotemporal sig-
nal, hy, are trainable coefficients, and K is the polynomial
order controlling the range of spatiotemporal interactions.
This operation (often called “shift-and-sum”) accumulates
higher-order neighborhoods in both space and time, pro-

RNT
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viding a powerful yet discrete means to capture rich spa-
tiotemporal dependencies.

Beyond filtering, GTCNN also incorporates zero-pad pool-
ing layers and nonlinearity, producing a compositional ar-
chitecture. It has shown strong empirical performance on
tasks like traffic forecasting and environmental data model-
ing, serving as a widely cited reference for product graph-
based deep learning.

4.3. Relation to CITRUS

While GTCNN relies on finite-order polynomial filtering
(Equation [7), CITRUS introduces a continuous exponen-
tial filter e~*Irrod derived from a partial differential equa-
tion on product graphs.  This leads to several distinctions:

* No polynomial order hyperparameter. GTCNN
must specify an integer K for (Sg)*. By contrast,
CITRUS’s diffusion times t§p ) in each domain are
continuous parameters, potentially simplifying model
tuning and reducing the risk of over-smoothing for
large K.

e Straightforward extension to multiple domains.
GTCNN focuses primarily on a two-domain scenario
(space x time). CITRUS’s PDE-based derivation nat-
urally generalizes to P factor graphs (e.g. space, time,
and additional axes like frequency), each with its own
Laplacian exponent.

e Continuous stability. The PDE viewpoint in CIT-
RUS facilitates theoretical analysis of stability and
diffusion, whereas GTCNN’s discrete polynomial ex-
pansion can be less transparent when K grows.

In short, CITRUS can be viewed as a continuous general-
ization of GTCNN: it shares the same product-graph foun-
dation but replaces discrete polynomials with a PDE-driven
exponential filter. This yields more flexible smoothing con-
trol, broader domain scalability, and a compact alternative
to high-order polynomial expansions.

5. Conclusion

CITRUS leverages continuous product-graph filtering to
handle multidomain data. Its key PDE-based equations
(Eq. [TH2) enable exponential filtering across factor graphs,
with domain-specific diffusion times to mitigate over-
smoothing. Experiments on standard spatiotemporal tasks
show its advantage in both long-horizon accuracy and com-
putational efficiency. For future research, we are curious to
know the trade-off between the computation cost and the
efficiency of CITRUS on five or more product graphs.
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