Waterpixels Generation
Chems Eddine Benaziza

Supervised by Christophe Kervazo
March 1, 2024

Abstract

Superpixels serve as a crucial preprocessing step in image segmentation techniques. This paper
elucidates the implementation pipeline for generating water pixels through the watershed trans-
form, inspired by prior work on water pixels [2]. The document comprehensively details the entire
implementation process. Moreover, in the conclusion, alternative methods are proposed to enhance
the computational efficiency of the calculations.

1 Introduction

1.1 Superpixels

Definition
UPERPIXELS represent coherent regions obtained through a low-level segmentation process applied
to an image. These regions serve as fundamental building blocks for more advanced analysis,
including tasks such as object detection, segmentation, and classification.

In the context of this paper, our investigation focuses on waterpixels as a method for generating
superpixels. Waterpixels offer an effective approach to achieve this segmentation and enhance the
subsequent analysis of images.

Recognizing that superpixels play a pivotal role as tools for downstream applications, our objective
is to ensure that the generation process is not overly time-consuming or memory-intensive.
Therefore, we carefully consider the time and space complexity associated with superpixel generation.

1.2 Properties

The superpixels we want to generate should have the following properties:

1. Homogeneity: pixels of a given SP should present similar colors or gray levels

2. Connected partition: each SP is made of a single connected component and SPs constitute a
partition of the image

3. Adherence to object boundaries: object boundaries should be included in the superpixels
boundaries

4. Regularity: SPs should form a regular pattern on the image. This property is often desirable
as it makes the SP more convenient to use for subsequent analysis steps.

Remark One of the main criteria of a good SP generation algorithm is the complexity of the
method, because superpixels are tools for further analysis, it should not take too long nor too much
memory.

Goal: The main goal of this paper is thus to follow steps in the reference [2] paper and show how
we could implement them in Python. A detailed Jupyter notebook comes with this paper.

1.3 Making Superpixels

To get the pixels we have two main steps:
1 Choosing the seeds

2 Building superpixels

In the first step, a set of seeds is chosen, which are typically spaced regularly over the image plane
and which can be either regions or single pixels.

Type A: Image independent, the center of a regular grid
Type B: Image dependent, they depend on the content, it takes time to find the good seeds

Type C: Image independent initially, iteratively refined to take into account the image

1.4 Building Superpixels
Two main methods: There are two main methods in superpixels generation.

Shortest path : these methods are based on region growing: they start from a set of seeds (points or
regions) and successively extend them by incorporating pixels in their neighborhood according
to a usual image-dependent cost function until every pixel of the image plane has been assigned
to exactly one superpixel. This process may or may not be iterated.

Shortest Distance Methods : These are iterative procedures inspired by the field of unsupervised
learning, where at each iteration step, seeds (such as centroids) are calculated from the previ-
ous partition, and pixels are then reassigned to the closest seed (like for example the k-means
approach).

Although methods inspired by general clustering methods (type 2) seem appealing at first sight,
they could lead to nonconnected superpixels which is undesirable. For type one solutions, based on
region growing, implement a path-type distance, where the distance between two pixels does not only
depend on value and position of the pixels themselves, but on values and positions along the path
connecting them. Type 1 methods imply connected superpixels regions, for which the number of seeds
is exactly the number of

1.5 Superpixels and Watershed
1 Good adherence to object boundaries when computed on the image gradient

2 It allows control of the number and spatial arrangement of the resulting regions through the choice
of markers

3 Connectivity and no post-process is required

4 Linear with the number of pixels in the image

2 Implementation

2.1 Steps to Make Superpixels

Here are the steps detailed in the reference article, that assure a good time and space complexity.

1 Computation of the gradient of an image: a morphological gradient

2 Definition of regular cells on the image centered on the vertices of a regular grid; we choose cell
centers in the grid

3 Selection of one marker per cell
4 Spatial regularization of the gradient with the help of a distance function

5 Application of the watershed transformation on the regularized gradient defined in step 4 from the
markers defined in step 2

Fig. 2. Tlustration of waterpixels generation: (a): original image; (b) corresponding Lab gradient; (c): selected markers within the regular grid of hexagonal
cells (step ¢ = 40 pixels); (d): distance function to markers; (g): distance function to cell centers; (e) and (h): spatially regularized gradient respectively
with distance functions to selected markers (d) and to cell centers (g); () and (i): Resulting waterpixels obtained by respectively applying the watershed
transformation to (&) and (h), with markers (c).

Figure 1: Image from the reference paper

3 Implentation steps

3.1 Computation of the Gradient of an Image: A Morphological Gradient

Before calculating the gradient, we compute a little smoothing of the image. We can complete this
step using a morphological opening and then closing.

Imagesmoothea = Closing(Opening(Image)) (1)

After that, we can convert the picture from a three-channel color to a one-gray level channel. After
this, we calculate the morphological gradient through a erosion substracted from a dilation of the
image.

G = dilation(f) — erosion(f) (2)

f : Gray scale image

The gradient helps to choose the seeds for the superpixels which will be useful for the coming steps.
To sum up this step, we take as input a picture with three channels, and as output, we will have a

gray scale gradient image.

3.2 Definition of Regular Cells on the Image

As each cell is meant to correspond to the generation of a unique water pixel, our method, through
the choice of one marker per cell, offers total control over the number of SP, with a strong impact on
their size and shape if desired.

Smoothed Image o Morphological Gradient of a smoothed image open/close

Figure 2: Original - smoothed - gradient of the image

To fix the seed, we compute the minima of the gradient g. When the minima is not unique, it could
be a connected component. This can be imagined as a flat surface where all values are similar and
represent a minimum. A method to find the gradient minima connected component was developed.
But for simplification reasons, we opted for one marker per cell. We first tried using the center of
cells. In both cases, either a connected component or a single marker (i.e., the center of the cell), there
should be a unique component to ensure regularity and connectivity of the resulting superpixels.

grid Cells and markers

= centers of the cells
- markers - minimum gradient points

' 4 "
0 100 200

Figure 3: Left : grid centers, Right Grid markers as minimal points of the gradient

3.3 Selection of One Marker per Cell

The selection of markers has enforced the pertinence of future superpixel-boundaries but also the
regularity of their pattern (by imposing only one marker per cell). In this paragraph, we discuss the
importance of marker selection and its impact on the resulting superpixels.

3.4 Spatial Regularization of the Gradient with the Help of a Distance
Function

In this section, we introduce a technique to regulate the gradient in a spatially coherent manner,
balancing between boundary adherence and regularity.

Let @ = {gi}1<i<n represent a set of N connected components of the image f. For every p € D,
where D is the domain of the image, we define a distance function dg with respect to @ as follows:

2 .
WE%@—Ugﬁﬂwm (3)
Here, o denotes the grid step defined previously. Normalizing by ¢ ensures that the regularization
is independent of the chosen superpixel (SP) size. There are two choices for the markers ¢;: either the
markers gq; = M; or the centers for the cells. The former yields better adherence to object boundaries,
while the latter produces more regular superpixels.
The spatially regularized gradient gr., is defined as:

Greg =9 T k-dq (4)

regularized gradient

50

100

150

200

250

300

0 100 200 300 400

Figure 4: Regularized gradient - smooth grid in the background

Where:

e g represents the gradient of the image f,

e dg is the distance function defined above, and
e [is the spatial regularization parameter.

A smaller k implies less regularization. As k approaches infinity, we converge towards the Voronoi
tessellation of the set {g; }1<i<n-

To summarize this step, we take the image gradient as input and produce a regularized gradient. In
the process, we implement a function that calculates the distance between points in the image domain
and a set of markers Q.

3.5 Application of the Watershed Transformation

In the final step of our superpixels generation implementation, we take the regularized gradient defined
in step 4 from the markers defined in step 2 and apply the watershed transformation on the spatially
regularized gradient g,eg, starting the flooding from the markers {M; }1<;<n, so that an image partition
{si}1<i<n is obtained. The s; are the resulting waterpixels.

4 Results and Conclusion

Finally, we were able to generate superpixels with a really good adherence to boundaries and regularity.
To measure the performance, we shoudl recall the criteria of the superpixel generation that include
boundary recall, contour density, and average mismatch factor, as well as computation time. Boundary
recall is defined as the percentage of ground-truth contour pixels that fall within strictly less than 3
pixels from superpixel boundaries C, given by:

{p € GT, d(p,C) < 3} 5
|GT|
where d is the L_1 (or Manhattan) distance. Contour density is defined as the number of superpixel
contour pixels divided by the total number of pixels in the image, given by:
~1Sc] + [S
EECE)

BR =

CD

50

200

300

0 100 200 300 400

Figure 5: Final with an excellent adherence to boundaries

where S, is the set of superpixel contour pixels, S is the set of one pixel wide image borders, and
D is the set of all pixels in the image.

The average mismatch factor is defined as the average shape and size dissimilarity between super-
pixels, given by:

1 o .
MF =+ ;mﬂsi ,5%)) (7)

where s* is the centered version of superpixel s;, s* is the average centered shape of all superpixels,
and mf is the mismatch factor between two sets, defined as:
_|AuB|-]ANDB]

Compactness is sometimes used in superpixels evaluation, but it is a poor measurement for region
regularity. The average mismatch factor is more appropriate to evaluate regularity than compactness.

These metrics were used in the reference paper to measure the performance of the proposed method
compared to other algorithms like SLIC, but in some cases the waterpixels was faster.

4.1 Takeaway

e The implementation successfully generates superpixels with good adherence to boundaries and
regularity.

e The calculation time is around 8 seconds, which can be improved for better computational
efficiency using the SMIL [1] python library

e The implementation aligns with the expectations of the reference paper, providing room for
improvements in computational efficiency.

e The simplified web app written in Python under the Streamlit framework makes it easy to see
and interpret the results.

4.2 Conclusion

In conclusion, this paper presents an implementation pipeline for generating water pixels through the
watershed transform, inspired by prior work on water pixels. The document provides a comprehensive
detail of the entire implementation process, including the computation of the gradient of an image,
definition of regular cells, selection of one marker per cell, spatial regularization of the gradient, and
the application of the watershed transformation. The resulting superpixels exhibit good adherence to
object boundaries and regularity, making them suitable for further image analysis tasks. However, the
calculation time is around 8 seconds, which can be improved. Following recommendations from one
of the authors of the reference paper, the use of the SMIL [1] python library is suggested for faster
calculations. Future work could focus on optimizing the computational efficiency of the calculations
while maintaining the quality of the generated superpixels.

5 Bonus

5.1 Web App

To make testing and parameter tuning easier, we have developed a web app using Streamlit. The app
allows the user to upload an image, select the parameters for the algorithm, and visualize the resulting
superpixels. The app can be run using the following command:

streamlit run app.py

5.2 Code and Libraries

The code for this project was written in Python 3.11 and requires the following libraries:

python, matplotlib, skimage, numpy, cv2

To run the code, an environment with these libraries installed is required. We recommend using Conda
as an environment manager.

References

[1] Matthieu Faessel and Michel Bilodeau. Smil: Simple morphological image library. Séminaire
Performance et Généricité, LRDE, 2014.

[2] Vaia Machairas, Matthieu Faessel, David Cérdenas-Pefia, Théodore Chabardes, Thomas Walter,
and Etienne Decenciere. Waterpixels. IEEE Transactions on Image Processing, 24(11):3707-3716,
2015.

	Introduction
	Superpixels
	Properties
	Making Superpixels
	Building Superpixels
	Superpixels and Watershed

	Implementation
	Steps to Make Superpixels

	Implentation steps
	Computation of the Gradient of an Image: A Morphological Gradient
	Definition of Regular Cells on the Image
	Selection of One Marker per Cell
	Spatial Regularization of the Gradient with the Help of a Distance Function
	Application of the Watershed Transformation

	Results and Conclusion
	Takeaway
	Conclusion

	Bonus
	Web App
	Code and Libraries

